Detecting Proximity Probe Cabling Errors Using Dynamic Calibration

These pressure sensors have either a portable or permanent configuration. Portable systems consist of pressure sensors that are connected to sensing lines running to some or all of the combustors. Similar to the portable systems, permanent systems provide sensors mounted outside the turbine enclosure.

Because of the long sensing lines involved, the ability to “purge” condensation is required. There are advantages to this simple, low-cost approach. Because these sensors are mounted outside the turbine enclosure, the conditions the sensors must endure are relatively mild, thus allowing for the use of less expensive sensors with longer life expectancy. In addition, these sensors can be serviced while the turbine is online.

Remote Sensors - Energy & Power Generation

Combustion Dynamics Instrumentation

Visit us online at www.imi-sensors.com

Toll-free in USA 800-959-4464 716-684-0003

ICP® Pressure Sensor Model 121A44

- Sensitivity: 1 to 100 mV/psi (0.145 to 14.5 mV/kPa)
- Measurement range: 50 to 500 psi
- 316 stainless steel diaphragm
- 1/4” NPT fitting

See page 138 for more information

ICP® Pressure Sensor Model 102M205

- Sensitivity: 10 to 100 mV/psi (1.45 to 14.5 mV/kPa)
- Measurement range: 50 to 5000 psi
- 316 stainless steel diaphragm
- 3/8-24 UNF fitting

See page 138 for more information

Sensor Enclosure Pressure Sensor (or Series 121)

“Infinitely” Coil: Tube Length approx. 10 m
Table of Contents

Proximity Probe System ... 3
Proximitors = Signal Conditioners .. 5
Proximity Probe & Cabling Part Numbers .. 6
Initial Set-Up ... 7
Measuring Dynamic Output ... 8
Correct Dynamic Output ... 9
Introducing Error ... 10
Incorrect Dynamic Output .. 11
Adjusting Gap Voltage .. 12
Compounding Dynamic Error .. 13
Summary ... 14
Thank You ... 15
Proximity probes are used to protect some of the world's most important rotating equipment, such as gas and steam turbines. The equipment is very valuable – in some cases generating more than one million dollars in US funds in revenue per day. Many times, proximity probes and non-contact displacement sensors (Eddy current probes) are used to protect these rotating shafts. The probes are installed 90° from each other. The tips of the proximity probes measure the motion of the shaft and the orbit plot of the shaft to determine if the shaft is out of balance or misaligned. Sometimes loading causes a vibration issue with the shaft. When those situations arise, unexpected outages occur that can cost companies millions of dollars.

Proximity probes are most commonly checked through the API 670 method of static calibration. This entails checking the output of the probe against a 4140 steel target at various gaps, essentially, 10, 20, 30, 40, 50 mils and so on and plotting that information. In the case we are evaluating here, we are going to demonstrate how to detect proximity probe cabling errors using dynamic calibration. Dynamic calibration often involves a wobble-plate design or in this case, a Model 9100D Portable Shaker Table or 9110D Portable Vibration Calibrator which, essentially, take a 4140 steel target and place it on top of a precision quartz reference accelerometer to simulate actual turbine vibration.
Proximity Probe System

Let's first look at the typical proximity probe system. The typical system contains a proximitor, which is like the signal conditioner for the proximity probe. This is also known as a probe driver. It contains the proximity probe itself, also known as an Eddy current probe, and an extension cable. The proximity probe is nothing more than a coil of wire. It has no moving parts. It does have a cap on the end that essentially protects it from impacting the shaft. Other than that, it’s just a coil of wire inside a housing. Its impedance changes with fluctuations in the magnetic field. The turbine shaft or the target, is a ferrous material and the proximity probe is measuring the distance from the tip of the probe to the shaft using the magnetic field.

Proximity Probe
- “Eddy Current Probe”
- Coil of Wire
- No Moving Parts
- Impedance Changes Based Upon Magnetic Field

Includes
- Proximitor
- Proximity Probe
- Extension Cable
The proximititor is sometimes called the probe driver and those who are familiar with ICP® or IEPE accelerometers could consider the proximititor as a signal conditioner. It’s the job of the proximititor to essentially convert the probe impedance into a linear voltage signal. The probe impedance is not necessarily linear. In fact, it is never linear but the proximititor takes the probe impedance and converts it to a linear signal from the probe range of 10 mils to 90 mils. If you are 10 mils from the target, the probe will read somewhere around -1 VDC or if you’re 90 mils from the target, it’s close to -17 VDC. The output of the probe is 200 mV/mil and is very linear over its 10 to 90 mil range.

The proximititor though, because it is converting probe impedance to voltage, is essentially tuned to a specific cable length. The standard lengths are one meter, five meters and nine meters. In the picture on page 4, the proximititor is set for a five meter cable. If a technician were to input a different cable length to the proximeter the output of the system would not be linear and a shift in dynamic sensitivity would occur. The proximititor, also has connections for power (V), common (COM) and output (OUT).

- Designed for Specific Cable Length Systems
- 1 m, 5 m & 9 m are API 670 Standards
- -24 VDC Power Required
- Output, Common and Supply Voltage Connections
- Converts Probe Impedance to Voltage
- Linearizes the Signal

The proximititor converts probe impedance into a linear voltage signal.
We'll take a closer look at the cabling, part numbers and the part number for the proximity probe – sometimes it’s not easy to distinguish. Bently Nevada is the market leading manufacturer of proximity probes. You see at the top-left their proximity probe part number and the number after the third dash is the length in meters of the integral cable on the proximity probe. In this example, the proximity probe part number is 330171. The 10 stands for one meter of integral cable. So, the proximity probe has one meter integral cable and a five meter system. An extension cable that’s four meters long is needed to get a five meter system. In an extension cable part number, the first number after the dash refers to the length of it in meters. So, the 040 after the 330130, indicates a four-meter cable. With a one-meter integral cable and a four meter extension cable connected through a 10-32 microdot before connecting to the proximitor, a five meter system is created, matching the numbers indicated on the proximitor.

Proximity Probe
- 330171-00-20-10-02-00
- Number after 3rd dash = length in meters
- 10 = 1 m

Extension Cable
- 330130-040-00-00
- Number after 1st dash = length in meters
- 040 = 4 m

Length of prox probe cable + extension cable must equal specified length on proximitor
- 5 m
Before testing, the initial gap needs to be set up for the proximity probe. The proximity probe is linear from 10 mils to 90 mils or in millimeters, about 0.25 mm to 2.5 mm. The probe tip needs to be 50 mils from the turbine shaft or the target.

If the appropriate cable is connected, the initial gap is not terribly important in terms of accuracy. Setting the gap at 50 mils is helpful in this example as it is the exact center of the dynamic range of the probe (between 10 mils to 90 mils). Essentially, the turbine shaft or the target can move 40 mils in either direction and the proximity probe can still measure accurately. If the initial gap is set at 60 mils, nothing harmful would happen. An incorrect output would be avoided as long as the right cable lengths were installed. You would just have a different range. If the probe begins 60 mils from the turbine shaft before it is started, then the shaft can travel 30 mils from the probe and up to 50 mils closer to the probe and displacement will still be measured accurately. Radial probes have alert and alarm settings below 10 mils in almost every application. It’s not practical to assume that a radial probe will measure \pm 40 mils peak-to-peak in a real application. Turbine shafts are so well balanced that even 8 mils or 4 or 5 mils of vibration is going to trigger the alert or alarm setting on that particular turbine shaft. Having the initial gap correct is important – but, from a practical standpoint, as long the correct cable is installed, being anywhere from 40 to 60 mils from the turbine shaft is perfectly acceptable. Setting the gap at 40 mils in this example gave a voltmeter reading of -8 VDC. This wouldn’t have an effect on the dynamic output, but in the example to the left, the proximity probe has been set to the initial gap of 40 mils and the DC output at 50 mils is -9 VDC as per the datasheet for the proximity probe.

- Center of Dynamic Range is 50 mils (1.27 mm)
- DC Output = -9.00 V
Measuring Dynamic Output

To measure the dynamic output of the proximity probe, the portable vibration calibrator needs to be in voltage mode. To do this with The Modal Shop’s 9110D unit, press down on the Amplitude button to toggle from ICP® to Voltage Mode. Often, ICP accelerometers are permanently installed on bearing housings or used in route-based applications with a magnet on the end of the sensor. Portable calibrators from The Modal Shop can create calibration certificates for these types of installations. When the calibrator is in ICP mode, it will power those sensors. In this example, the proximity probe is being powered with the proximitor. The AC voltage output is being measured as the dynamic signal from that proximitor. To change the calibrator to be in Voltage Mode, the Amplitude button is held down. Then the output of the proximitor is connected to the test sensor input BNC.
Correct Dynamic Output

Below is the correct dynamic output. If the correct cable is attached (a four meter extension cable and a one meter integral cable on the probe) the results will read as 200 mV/mil or 7.90 mV/µm. The images on the right show 3 mils peak-to-peak and 3000 CPM. Vibration is simulated at 3000 CPM or 60 Hz. The reading created a result close to the desired dynamic output of 201 mV/mil. Tolerance is 5%, meaning that anything from 190 to 210 mV/mil is within tolerance for a simulation at 3 mils peak-to-peak. In metric, the simulation is at 75 µm peak-to-peak and again at 3000 CPM results in an output of 7.94 mV/µm. This is very close to the desired output of 7.90.
What happens if we introduce cable error? These cables look very similar. The cables are the same color, they have the same connector and they share an almost identical part number. If the digits after the first dash are 040, the cable is 4 m. If they are 045, the cable is 4.5 m. It would be best to use a 4.5 m cable when working with a 5 m system and a proximity probe with 0.5 m of integral cable. In this example, an error is introduced, essentially extending the proximititor an extra 0.5 meter.
Incorrect Dynamic Output

The data here shows use of an incorrect cable. The readout shows measurements for a proximitor expected to be using 5 meters of cable. In reality, the proximity probe has 1 meter of integral cable and the extension cable is now 4.5 meters long. The proximitor is being sent an extra 0.5 meter of cable, which is causing an 11.5% drop in dynamic output. 200 mV/mil are anticipated, and in actuality, the number reported is approximately 177 mV/mil at 3 mils peak-to-peak, 3000 CPM (in metric, 6.97 mV/μm at 75 microns peak-to-peak at 3000 CPM). By making this mistake in cabling, the vibration protection system is expecting an output of 200 mV/mil with the alert and alarm levels set based on this scale. If the vibration protection system is receiving 177 mV/mil, then the alert and alarms are actually tripping 11.5% too late or 11.5% low. More vibration will need to be generated to trip the alarms.

<table>
<thead>
<tr>
<th>6.972 mV/µm</th>
<th>176.90 mV/mil</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 µm p - p</td>
<td>3.0 mil p - p</td>
</tr>
<tr>
<td>3000 CPM</td>
<td>3000 CPM</td>
</tr>
</tbody>
</table>

Desired Dynamic Output
- ~200 mV/mil
- ~7.90 mV/µm
- % error = 11.5%

- 5 m system
- Prox Probe = 1 m Cable
- Extension Cable = 4.5 m Cable
The problem continues with incorrect cable length when technicians mistake that error for incorrect probe position. This is very easy to do. In many installations, the position of the tip of the proximity probe cannot be seen during installation on the turbine shaft. Obviously, in the calibration example, it is very easy but to the naked eye it’s very difficult to discern: “What’s 50 mils? Does that look right? Does that look like 50 mils? Is it really 40 mils?” Whether its 1 mil or 10 mils, it’s difficult to see the difference.

Many times when the probe is installed and an incorrect cable is used, the gap voltage is going to read incorrectly. In the example to the left, the top reading is 7.69 volts DC. In the practical application, it would read the same on the front panel of the data acquisition system and the technician would say, “Oh, my proximity probe is not installed in the correct place. Let me adjust the position of the tip relative to the shaft so that I can get exactly 50 mils initial gap before I turn on this turbine. I want to see -9 VDC.” Unfortunately, the probe may be installed in the correct position and the incorrect voltage reading is due to a cabling error.
Compounding Dynamic Error

In this example, if the position of the proximity probe is adjusted, the gap voltage can be manipulated to read correctly. In actuality, it will increase the dynamic output error in the system. When the 5.5 m of cable were connected to the 5 m proximititor an error of 11.5% was encountered. The error has been compounded by mistakenly adjusting the position of the probe and having the incorrect initial gap, to become a 16% error.

The objective is to look for 200 mV/mil and instead the recording is 169 mV/mil. In addition, the dynamic output is 7.90 mV/µm and the actual dynamic output is 6.65. So, once again, if a vibration alarm were set at 3 or 5 mils peak-to-peak and the vibration protection system was based on 200 mV/mil, the alarm will trip later than desired because only 169 mV/mil are being sent from the proximity probe.
Probe extension cable lengths are one of the biggest reasons for proximity probe errors in the power generation and petrochemical markets. It can be easy to confuse them, making a mistake. Technicians can compound a mistake by adjusting the proximity probe position to try to make the initial gap voltage look correct. Using the dynamic calibration method, before a gas or steam turbine is turned on, is a great way to find out if the proximity probes are operating correctly—resulting in correctly functional alert and alarm levels.

In fact, proximity probes don’t actually have to be connected to the calibrator like in the examples demonstrated. The probe can be left connected to data acquisition and the displacement turned to the alert and alarm level to see if the thresholds have tripped and if an alarm is being sent to your phone. This allows occurrence of an alarm to be confirmed.

It’s important to note that through the static proximity probe calibration method, this type of error in cable length can be identified. A typical static test produces linear DCV output from 10 mils to 90 mils. Performing this test with an incorrect cable will result in non-linear calibration curve.

The dynamic test method is the only way to test the entire measurement chain: probe, cable, probe driver and monitoring system. Dynamic testing simulates actual machine vibration conditions at running speed. The dynamic mode creates a way to check the alert and alarm levels and a method to confirm the cable and proximity probe output.

With a portable calibrator from The Modal Shop, you can create calibration certificates for both frequency response and for proximity probes (linearities in particular), so you can have a calibration record to save in the quality department. We invite you to look at the videos linked on the following page. They detail the mounting of the proximity probe into the adaptor kit for the Model 9110D as well as how to use the
Thank You!

We appreciate your attention and thank you so much for working with The Modal Shop!

Video: Using 9110D to Calibrate Proximity Probes & Create Certificates
http://www.modalshop.com/ID=967

Video: Installing the Proximity Probe Adaptor Kit & Mounting the Probe
http://www.modalshop.com/ID=715

For more information contact
portablecal@modalshop.com